7.1 Solve Linear Systems by Graphing

Goal • Graph and solve systems of linear equations.

VOCABULARY

VOCABULARY
Systems of linear equations - 2 or more linear equations

Leck (2,3)

The system of linear equations are system

$$2 + 3 = 5$$
 $3 + 3 = 5$
 $3 + 3 = 5$
 $3 + 3 = 5$
 $3 + 3 = 6$

Ax + y = 6

Solution of a system of linear equations. An ordered pair (x,y)

Solution of a system of linear equations.

Solution of a system of linear equations. An ordered pair (x,y) that makes all equations true. The point of intersection. (a,3) is not a solution.

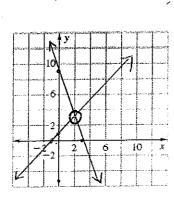
Consistent independent system

SOLVING A LINEAR SYSTEM USING THE GRAPH-AND-CHECK METHOD

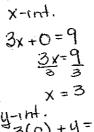
Step 1 Graph both equations in the same coordinate plane. For ease of graphing, you may want to write each equation in <u>slope-intercept form</u>. y=mx+b standard form - graph using the intercepts.

Step 2 Estimate the coordinates of the intersection point

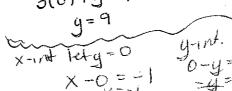
Step 3 Check the coordinates algebraically by substituting into each equation of the original linear system.


Mandatory

Example 1 - Use the graph-and-check method (Neatness


Solve the linear system: 3x + y = 9x - y = -1 Equation 1 Equation 2

Solution


1. Graph both equations.

X/y int.
Approach 1

y-int. 3(0)+y=9

$$3x + 9 = -3x$$

$$y = -3x + 9$$

$$x - y = -1$$

$$x - y = -x - 1$$

$$x - y = -x - 1$$

- 2. Estimate the point of intersection. The two lines appear to intersect at $(\frac{3}{2}, \frac{3}{3})$.
- 3. Check whether (2, 3) is a solution by substituting 2 for x and 3for y in each of the original equations.

Equation 1

Equation 2

$$3x + y = 9$$

x - y = -1

$$\frac{3(2) + 3}{6 + 3} \stackrel{?}{=} 9 \qquad \frac{3 - 3}{-1} \stackrel{?}{=} -1$$

Because (2, 3) is a solution of each equation in the linear system, it is a

Solution of the linear system.

Checkpoint Solve the linear system by graphing.

1.
$$2y + 4x = 12$$

 $2x - y = -10$

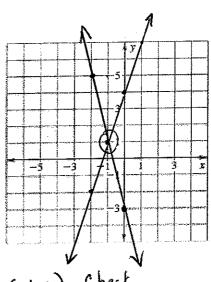
(0,6)
$$2y + 4x = 12$$

(3,0) $y - 12 + 12$
 $2y = 12$

$$\frac{\partial y}{\partial y} = \frac{12}{2}$$

$$y-int.$$
 let $x=0$
 $-\frac{1}{y}=-\frac{10}{-1}$
 $y=10$

$$\frac{\partial x}{\partial x} = \frac{-10}{2}$$


$$\begin{array}{c|c}
(-1,8) & ? \\
2(8) + 4(-1) & = 12
\end{array}$$

$$2(-1) - 8 = -10$$

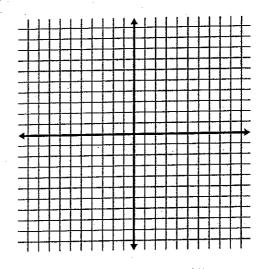
$$-2 - 8 = -10$$

$$-10 = -10$$

2.
$$2y = 6x + 8$$

 $-\frac{4x + y = -3}{4x}$
 $\frac{3y}{3} = \frac{6x + 8}{2}$ $y = -4x - 3$
 $y = 3x + 4$ $\frac{-4}{1} = \frac{4}{-1}$

Example 2 - A business rents in-line skates and bicycles. During one day, the business has a total of 25 rentals and collects \$450 for the rentals. It costs \$15/day to rent the skates and \$30/day to rent a bicycle. Find the number of pairs of skates rented and the number of bicycles rented. (Write and solve a linear system to solve this problem.)


0+5=25 15(20)+30(5)=450 25=25 2500+150=450 450=450 X = # of skak rental 3 y = # of bikes ren. y = # of bikes ren. x + y = 25 $x - \inf y = 0 \quad (25,0)$ x = 25 $x - \inf y = 0 \quad (25,0)$ x = 25 $y - \inf x = 0 \quad (0,25)$ y = 25 y = 25y by 5 x-1nl. 64y=0 (20,5) y-int. let x=0 tented 20 30y = 450 in-line statis y=15 (0,15) and 5 bicycli and 5 bicycles. # of in-line skale rentals

Example 3 - Solve the linear system by graphing. Check your solution.

$$\frac{1}{5}x - \frac{2}{5}y = \frac{-8}{5}$$

$$\frac{-3}{4}x + y = 3$$

$$didnot do in class$$

